Stable and compact face recognition via unlabeled data driven sparse representation-based classification
نویسندگان
چکیده
Sparse representation-based classification (SRC) has attracted much attention by casting the recognition problem as simple linear regression problem. SRC methods, however, still is limited to enough labeled samples per category, insufficient use of unlabeled samples, and instability representation. For tackling these problems, an data driven inverse projection pseudo-full-space model proposed with low-rank sparse constraints. The aims mine hidden semantic information intrinsic structure all available data, which suitable for few proportion imbalance between problems in frontal face recognition. mixed Gauss–Seidel Jacobian ADMM algorithm introduced solve model. convergence, representation capability stability are analyzed. Experiments on three public datasets show that LR-S-PFSRC achieves stable results, especially samples. • An projection-based small sample imbalanced data. solved a algorithm.
منابع مشابه
Robust face recognition via low-rank sparse representation-based classification
Face recognition has attracted great interest due to its importance in many real-world applications. In this paper, we present a novel low-rank sparse representation-based classification (LRSRC) method for robust face recognition. Given a set of test samples, LRSRC seeks the lowest-rank and sparsest representation matrix over all training samples. Since low-rank model can reveal the subspace st...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملCompetitive Sparse Representation Classification for Face Recognition
A method, named competitive sparse representation classification (CSRC), is proposed for face recognition in this paper. CSRC introduces a lowest competitive deletion mechanism which removes the lowest competitive sample based on the competitive ability of training samples for representing a probe in multiple rounds collaborative linear representation. In other words, in each round of competing...
متن کاملRobust Face Recognition via Sparse Representation
In this project, we implement a robust face recognition system via sparse representation and convex optimization. We treat each test sample as sparse linear combination of training samples, and get the sparse solution via L1-minimization. We also explore the group sparseness (L2-norm) as well as normal L1-norm regularization.We discuss the role of feature extraction and classification robustnes...
متن کاملSparse Representation for Video-Based Face Recognition
With the ever-increasing security threats, the problem of invulnerable authentication systems is becoming more acute. Traditional means of securing a facility essentially depend on strategies corresponding to “what you have” or “what you know”, for example smart cards, keys and passwords. These systems however can easily be fooled. Passwords for example, are difficult to remember and therefore ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Signal Processing-image Communication
سال: 2023
ISSN: ['1879-2677', '0923-5965']
DOI: https://doi.org/10.1016/j.image.2022.116889